Zadanie 9


 

podglad pliku   

 

 


 

podglad pliku

 


 

podglad pliku

 


Zadanie 10


 

      

 

 


 

 

 

 


 

 

 

 


 

 

 

 


Zadanie 11


a) Sprawdźmy, czy -1 jest pierwiastkiem tego wielomianu.

      

 

 

 

 

Wielomian w(x) nie jest podzielny przez dwumian q(x).


b) Sprawdźmy czy -2 jest pierwiastkiem tego wielomianu.

 

 

 

 

Wielomian w(x) jest podzielny przez dwumian q(x).


c) Sprawdźmy czy -3 jest pierwiastkiem tego wielomianu.

 

 

 

 

 

Wielomian w(x) nie jest podzielny przez dwumian q(x).


d) Sprawdźmy czy 4 jest pierwiastkiem tego wielomianu.

 

 

 

 

 

Wielomian w(x) nie jest podzielny przez dwumian q(x).


e) Sprawdźmy czy -5 jest pierwiastkiem tego wielomianu.

 

 

 

 

Wielomian w(x) jest podzielny przez dwumian q(x).


f) Sprawdźmy czy 6 jest pierwiastkiem tego wielomianu.

 

 

 

 

  

Wielomian w(x) nie jest podzielny przez dwumian q(x).


Zadanie 12


Korzystając z tw. o pierwiastkach całkowitych:

Jeśli wielomian w(x) ma pierwiastek całkowity, to jest on dzielnikiem wyrazu wolnego a0.

 

a) Wypiszmy dzielniki wyrazu wolnego, czyli dzielniki 4: 1, 2, 4, -1, -2, -4.    

Pierwiastkami wielomianu nie mogą być: -3, 0, 5.

 

b) Wypiszmy dzielniki wyrazu wolnego, czyli dzielniki 6: 1, 2, 3, 6, -1, -2, -3, -6.

Pierwiastkami wielomianu nie mogą być: 0, 5.

 

c) Wypiszmy dzielniki wyrazu wolnego, czyli dzielniki 15: 1, 3, 5, 15, -1, -3, -5, -15.

Pierwiastkami wielomianu nie mogą być: 0, 2.

 

 


Zadanie 13


 

 

 podglad pliku     

 

Rozłóżmy  na czynniki.

 

 

 

 


 

 

podglad pliku

 

Rozłóżmy  na czynniki.

 

 

 

 

 

 

 


 

 

podglad pliku

 

Rozłóżmy  na czynniki.

 

 

 

 

 

 

 


 

 

podglad pliku

 

 

 

 

 

 

 

 


 

 

podglad pliku

 

Rozłóżmy  na czynniki.

 

 

 

 

 

 


 

 

podglad pliku

 

 

 

 

 


Zadanie 14


a) 

Dzielniki 4:

       

Pierwiastkami nie mogą być:

 

 

b)

Dzielniki 4: 

Dzielniki 6:

Pierwiastkami nie mogą być:

 

 

c)

Dzielniki 6:

Dzielniki 4: 

Pierwiastkami nie mogą być 

   

 

d)

Dzielniki 6:

Pierwiastkami nie mogą być

   

 


Zadanie 15


 

 

Możliwe pierwiastki:   

Sprawdźmy, czy któraś z powyższych liczb jest pierwiastkiem.

 

 

           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

podglad pliku

 

 

Sprawdźmy, czy da się rozłożyć   

 

 

Zatem:

   

 

 


   

Możliwe pierwiastki:   

Sprawdźmy, czy któraś z powyższych liczb jest pierwiastkiem.

 

 

 

 

 

 

 

 

 

 

 

 

 

podglad pliku

 

Sprawdźmy, czy da się rozłożyć   

 

 

 

 

Zatem:

 

 

 


  

 

Możliwe pierwiastki:   

Sprawdźmy, czy któraś z powyższych liczb jest pierwiastkiem.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

podglad pliku

 

 

Sprawdźmy, czy da się rozłożyć   

 

 

 

 

Zatem:

 

 

 


 

 

 

Możliwe pierwiastki:   

Sprawdźmy, czy któraś z powyższych liczb jest pierwiastkiem.

Sprawdźmy   

 

 

 

 

podglad pliku

 

 

Sprawdźmy, czy da się rozłożyć   

 

 

 

 

Zatem: